are curved with a sigmoid flexure towards the stomach; in both the species examined the curve is but slight and always from the centre of the animal.

The ridges of cilia are represented by Professor Grant as extending the whole length of the animal from mouth to anus. This probably indicates a difference of species. The rows of cilia do not appear to me to be webbed, especially in the second species; and when in motion, it seemed as if the lateral cilia in each rows moved before the central, thus causing an undulating appearance and a play of colours. I could not observe the filaments branching out from the nervous circle as figured by Professor Grant.

The whole structure of the animal examined conveyed the idea of the bilateral rather than of the radiate type, and tended to confirm the opinions of M. Blainville on that subject.
M. Blainville's character of Cydippe might be amended thus:

Body regular, free, gelatinous, oval, divided into eight lobes, each crowned by a ridge furnished with transverse rows of vibratile cilia.

Mouth opening into a compressed and 4-lobed stomach, from which a canal proceeds to the anus. A cavity on each side of the centre opening towards the anal extremity and containing a long semipinnated retractile filament.

REFERENCES TO PLATE II.

1. Cydippe No. 2.
2. Cydippe No. 1.
3. Diagram of stomach and filamentary cavities.
4. Section showing vessels.

> XVI.-Descriptions of some new or rare Indian Plants. By G. A. W. Arnott, Esq., LL.D.
> [Continued from p. 92.$]$

Lophopetalum, Wight, MSS. (Celastrinea).
Calyx scutelliformis 4-5-lobus, lobis rotundatis brevibus. Petala $4-5$ sessilia orbiculata patentia, supra circa basin cristis lobulisque carnosis instructa versus marginem nuda lævia. Torus discoideus, $4-5$-gonus crassus carnosus calycis cavitatem omnino implens.
are curved with a sigmoid flexure towards the stomach; in both the species examined the curve is but slight and always from the centre of the animal.

The ridges of cilia are represented by Professor Grant as extending the whole length of the animal from mouth to anus. This probably indicates a difference of species. The rows of cilia do not appear to me to be webbed, especially in the second species; and when in motion, it seemed as if the lateral cilia in each rows moved before the central, thus causing an undulating appearance and a play of colours. I could not observe the filaments branching out from the nervous circle as figured by Professor Grant.

The whole structure of the animal examined conveyed the idea of the bilateral rather than of the radiate type, and tended to confirm the opinions of M. Blainville on that subject.
M. Blainville's character of Cydippe might be amended thus:

Body regular, free, gelatinous, oval, divided into eight lobes, each crowned by a ridge furnished with transverse rows of vibratile cilia.

Mouth opening into a compressed and 4-lobed stomach, from which a canal proceeds to the anus. A cavity on each side of the centre opening towards the anal extremity and containing a long semipinnated retractile filament.

REFERENCES TO PLATE II.

1. Cydippe No. 2.
2. Cydippe No. 1.
3. Diagram of stomach and filamentary cavities.
4. Section showing vessels.

> XVI.-Descriptions of some new or rare Indian Plants. By G. A. W. Arnott, Esq., LL.D.
> [Continued from p. 92.$]$

Lophopetalum, Wight, MSS. (Celastrinea).
Calyx scutelliformis 4-5-lobus, lobis rotundatis brevibus. Petala $4-5$ sessilia orbiculata patentia, supra circa basin cristis lobulisque carnosis instructa versus marginem nuda lævia. Torus discoideus, $4-5$-gonus crassus carnosus calycis cavitatem omnino implens.
are curved with a sigmoid flexure towards the stomach; in both the species examined the curve is but slight and always from the centre of the animal.

The ridges of cilia are represented by Professor Grant as extending the whole length of the animal from mouth to anus. This probably indicates a difference of species. The rows of cilia do not appear to me to be webbed, especially in the second species; and when in motion, it seemed as if the lateral cilia in each rows moved before the central, thus causing an undulating appearance and a play of colours. I could not observe the filaments branching out from the nervous circle as figured by Professor Grant.

The whole structure of the animal examined conveyed the idea of the bilateral rather than of the radiate type, and tended to confirm the opinions of M. Blainville on that subject.
M. Blainville's character of Cydippe might be amended thus:

Body regular, free, gelatinous, oval, divided into eight lobes, each crowned by a ridge furnished with transverse rows of vibratile cilia.

Mouth opening into a compressed and 4-lobed stomach, from which a canal proceeds to the anus. A cavity on each side of the centre opening towards the anal extremity and containing a long semipinnated retractile filament.

REFERENCES TO PLATE II.

1. Cydippe No. 2.
2. Cydippe No. 1.
3. Diagram of stomach and filamentary cavities.
4. Section showing vessels.

> XVI.-Descriptions of some new or rare Indian Plants. By G. A. W. Arnott, Esq., LL.D.
> [Continued from p. 92.$]$

Lophopetalum, Wight, MSS. (Celastrinea).
Calyx scutelliformis 4-5-lobus, lobis rotundatis brevibus. Petala $4-5$ sessilia orbiculata patentia, supra circa basin cristis lobulisque carnosis instructa versus marginem nuda lævia. Torus discoideus, $4-5$-gonus crassus carnosus calycis cavitatem omnino implens.
are curved with a sigmoid flexure towards the stomach; in both the species examined the curve is but slight and always from the centre of the animal.

The ridges of cilia are represented by Professor Grant as extending the whole length of the animal from mouth to anus. This probably indicates a difference of species. The rows of cilia do not appear to me to be webbed, especially in the second species; and when in motion, it seemed as if the lateral cilia in each rows moved before the central, thus causing an undulating appearance and a play of colours. I could not observe the filaments branching out from the nervous circle as figured by Professor Grant.

The whole structure of the animal examined conveyed the idea of the bilateral rather than of the radiate type, and tended to confirm the opinions of M. Blainville on that subject.
M. Blainville's character of Cydippe might be amended thus:

Body regular, free, gelatinous, oval, divided into eight lobes, each crowned by a ridge furnished with transverse rows of vibratile cilia.

Mouth opening into a compressed and 4-lobed stomach, from which a canal proceeds to the anus. A cavity on each side of the centre opening towards the anal extremity and containing a long semipinnated retractile filament.

REFERENCES TO PLATE II.

1. Cydippe No. 2.
2. Cydippe No. 1.
3. Diagram of stomach and filamentary cavities.
4. Section showing vessels.

> XVI.-Descriptions of some new or rare Indian Plants. By G. A. W. Arnott, Esq., LL.D.
> [Continued from p. 92.$]$

Lophopetalum, Wight, MSS. (Celastrinea).
Calyx scutelliformis 4-5-lobus, lobis rotundatis brevibus. Petala $4-5$ sessilia orbiculata patentia, supra circa basin cristis lobulisque carnosis instructa versus marginem nuda lævia. Torus discoideus, $4-5$-gonus crassus carnosus calycis cavitatem omnino implens.

Stamina 4-5, petalis alterna, supra discum inserta : filamenta persistentia subulata. Anthere ovatæ, biloculares, longitudinaliter dehiscentes. Ovarium disco semi-immersum, 3-4-loculare. Ovula biserialia, 8-12 in quoque loculo, adscendentia. Stylus brevis persistens. Stigma obtusum. Capsula 3-4-angularis, 3-4-locularis, loculicide dehiscens, loculis subdispermis. Semina arillata.

Fructices glabri. Folia opposita, petiolata. Flores magni, corymbosi.

1. L. Wightianum (Arn.) ; foliis elliptico-oblongis paullo acuminatis basi obtusis integerrimis, corymbis terminalibus paniculatis, floribus pentameris, ovario 3 -loculari. Wight. Cat. n. 2440.

Hab. in Malabaria, Wight.
Flores 6-8 lineas lati. Petala pallide sulphurea. Discus sanguineus, angulis protuberantibus rotundatis, petalorum bases incumbentibus.
2. L. grandiforum (Arn.) ; foliis subovalibus obtusis basi acutis serratis, corymbis axillaribus folio brevioribus, floribus tetrameris, ovario 4-loculari.-Evonymus grandiflorus. Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 404 ; Cat. n. 4282.-E. lucidus. Don, Prod. Fl. Nep. p. 191. DC. Prod. ii. p. 4.
Hab. in Nepala, Wallich.
Flores 10 lin. lati. Petala (fide Wallich) alba. Discus atroviridis, quadratus.

I am unwilling to change the specific name of this species, as it has been already fully described under it by its distinguished discoverer, but the flowers are scarcely larger than those of the other species.

Microtropis, Wall.

Sepala 5, orbiculata, 3 interiora, 2 exteriora, imbricata. Corolla hypogyna, gamopetala, carnosa, 5 -partita, laciniis oblongis concavis erectis intus carina longitudinali instructis, deciduis tubum carnosum annuliformem circa ovarium relinquentibus: æstivatio imbricativa. Stamina 5, brevia, corollæ tubo inserta, laciniis alternantia. Filamenta subulata glabra. Antherce cordato-oblongæ, dorso medio affixæ, biloculares intus longitudinaliter dehiscentes. Squamula 5, breves, epipetalæ staminibus alternantes, paullo inferius insertæ. Discus nullus (nisi tubo corollæ arcte coalitus). Ovarium liberum, brevissimum, biloculare, loculis 2 -ovulatis. Ovula collateralia, adscendentia. Stylus conicus, carnosus, ab ovario externe haud distin-

Stamina 4-5, petalis alterna, supra discum inserta : filamenta persistentia subulata. Anthere ovatæ, biloculares, longitudinaliter dehiscentes. Ovarium disco semi-immersum, 3-4-loculare. Ovula biserialia, 8-12 in quoque loculo, adscendentia. Stylus brevis persistens. Stigma obtusum. Capsula 3-4-angularis, 3-4-locularis, loculicide dehiscens, loculis subdispermis. Semina arillata.

Fructices glabri. Folia opposita, petiolata. Flores magni, corymbosi.

1. L. Wightianum (Arn.) ; foliis elliptico-oblongis paullo acuminatis basi obtusis integerrimis, corymbis terminalibus paniculatis, floribus pentameris, ovario 3 -loculari. Wight. Cat. n. 2440.

Hab. in Malabaria, Wight.
Flores 6-8 lineas lati. Petala pallide sulphurea. Discus sanguineus, angulis protuberantibus rotundatis, petalorum bases incumbentibus.
2. L. grandiforum (Arn.) ; foliis subovalibus obtusis basi acutis serratis, corymbis axillaribus folio brevioribus, floribus tetrameris, ovario 4-loculari.-Evonymus grandiflorus. Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 404 ; Cat. n. 4282.-E. lucidus. Don, Prod. Fl. Nep. p. 191. DC. Prod. ii. p. 4.
Hab. in Nepala, Wallich.
Flores 10 lin. lati. Petala (fide Wallich) alba. Discus atroviridis, quadratus.

I am unwilling to change the specific name of this species, as it has been already fully described under it by its distinguished discoverer, but the flowers are scarcely larger than those of the other species.

Microtropis, Wall.

Sepala 5, orbiculata, 3 interiora, 2 exteriora, imbricata. Corolla hypogyna, gamopetala, carnosa, 5 -partita, laciniis oblongis concavis erectis intus carina longitudinali instructis, deciduis tubum carnosum annuliformem circa ovarium relinquentibus: æstivatio imbricativa. Stamina 5, brevia, corollæ tubo inserta, laciniis alternantia. Filamenta subulata glabra. Antherce cordato-oblongæ, dorso medio affixæ, biloculares intus longitudinaliter dehiscentes. Squamula 5, breves, epipetalæ staminibus alternantes, paullo inferius insertæ. Discus nullus (nisi tubo corollæ arcte coalitus). Ovarium liberum, brevissimum, biloculare, loculis 2 -ovulatis. Ovula collateralia, adscendentia. Stylus conicus, carnosus, ab ovario externe haud distin-

Stamina 4-5, petalis alterna, supra discum inserta : filamenta persistentia subulata. Anthere ovatæ, biloculares, longitudinaliter dehiscentes. Ovarium disco semi-immersum, 3-4-loculare. Ovula biserialia, 8-12 in quoque loculo, adscendentia. Stylus brevis persistens. Stigma obtusum. Capsula 3-4-angularis, 3-4-locularis, loculicide dehiscens, loculis subdispermis. Semina arillata.

Fructices glabri. Folia opposita, petiolata. Flores magni, corymbosi.

1. L. Wightianum (Arn.) ; foliis elliptico-oblongis paullo acuminatis basi obtusis integerrimis, corymbis terminalibus paniculatis, floribus pentameris, ovario 3 -loculari. Wight. Cat. n. 2440.

Hab. in Malabaria, Wight.
Flores 6-8 lineas lati. Petala pallide sulphurea. Discus sanguineus, angulis protuberantibus rotundatis, petalorum bases incumbentibus.
2. L. grandiforum (Arn.) ; foliis subovalibus obtusis basi acutis serratis, corymbis axillaribus folio brevioribus, floribus tetrameris, ovario 4-loculari.-Evonymus grandiflorus. Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 404 ; Cat. n. 4282.-E. lucidus. Don, Prod. Fl. Nep. p. 191. DC. Prod. ii. p. 4.
Hab. in Nepala, Wallich.
Flores 10 lin. lati. Petala (fide Wallich) alba. Discus atroviridis, quadratus.

I am unwilling to change the specific name of this species, as it has been already fully described under it by its distinguished discoverer, but the flowers are scarcely larger than those of the other species.

Microtropis, Wall.

Sepala 5, orbiculata, 3 interiora, 2 exteriora, imbricata. Corolla hypogyna, gamopetala, carnosa, 5 -partita, laciniis oblongis concavis erectis intus carina longitudinali instructis, deciduis tubum carnosum annuliformem circa ovarium relinquentibus: æstivatio imbricativa. Stamina 5, brevia, corollæ tubo inserta, laciniis alternantia. Filamenta subulata glabra. Antherce cordato-oblongæ, dorso medio affixæ, biloculares intus longitudinaliter dehiscentes. Squamula 5, breves, epipetalæ staminibus alternantes, paullo inferius insertæ. Discus nullus (nisi tubo corollæ arcte coalitus). Ovarium liberum, brevissimum, biloculare, loculis 2 -ovulatis. Ovula collateralia, adscendentia. Stylus conicus, carnosus, ab ovario externe haud distin-

Stamina 4-5, petalis alterna, supra discum inserta : filamenta persistentia subulata. Anthere ovatæ, biloculares, longitudinaliter dehiscentes. Ovarium disco semi-immersum, 3-4-loculare. Ovula biserialia, 8-12 in quoque loculo, adscendentia. Stylus brevis persistens. Stigma obtusum. Capsula 3-4-angularis, 3-4-locularis, loculicide dehiscens, loculis subdispermis. Semina arillata.

Fructices glabri. Folia opposita, petiolata. Flores magni, corymbosi.

1. L. Wightianum (Arn.) ; foliis elliptico-oblongis paullo acuminatis basi obtusis integerrimis, corymbis terminalibus paniculatis, floribus pentameris, ovario 3 -loculari. Wight. Cat. n. 2440.

Hab. in Malabaria, Wight.
Flores 6-8 lineas lati. Petala pallide sulphurea. Discus sanguineus, angulis protuberantibus rotundatis, petalorum bases incumbentibus.
2. L. grandiforum (Arn.) ; foliis subovalibus obtusis basi acutis serratis, corymbis axillaribus folio brevioribus, floribus tetrameris, ovario 4-loculari.-Evonymus grandiflorus. Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 404 ; Cat. n. 4282.-E. lucidus. Don, Prod. Fl. Nep. p. 191. DC. Prod. ii. p. 4.
Hab. in Nepala, Wallich.
Flores 10 lin. lati. Petala (fide Wallich) alba. Discus atroviridis, quadratus.

I am unwilling to change the specific name of this species, as it has been already fully described under it by its distinguished discoverer, but the flowers are scarcely larger than those of the other species.

Microtropis, Wall.

Sepala 5, orbiculata, 3 interiora, 2 exteriora, imbricata. Corolla hypogyna, gamopetala, carnosa, 5 -partita, laciniis oblongis concavis erectis intus carina longitudinali instructis, deciduis tubum carnosum annuliformem circa ovarium relinquentibus: æstivatio imbricativa. Stamina 5, brevia, corollæ tubo inserta, laciniis alternantia. Filamenta subulata glabra. Antherce cordato-oblongæ, dorso medio affixæ, biloculares intus longitudinaliter dehiscentes. Squamula 5, breves, epipetalæ staminibus alternantes, paullo inferius insertæ. Discus nullus (nisi tubo corollæ arcte coalitus). Ovarium liberum, brevissimum, biloculare, loculis 2 -ovulatis. Ovula collateralia, adscendentia. Stylus conicus, carnosus, ab ovario externe haud distin-
guendus. Stigmata 4, punctiformia.-" Capsula oblonga, unilocularis, bivalvis, a basi dehiscens. Semina solitaria, arillo tenui succulento involuta. Albumen firmum tenax. Embryo erectus, cotyledonibus cordato-ovatis, radicula cylindrica, infera." - Roxb.

Arbor elegans, glabra, habitu Caralliæ. Folia opposita, ovata vel ovato-lanceolata, obtuse acuminata, coriacea, integerrima, subtus pallida, tenuiter penninervia, petiolata. Stipulæ nulla. Pedunculi axillares, vel supra-axillares ac interpetiolares, perbreves, semel bisve dichotomi, pauciflori. Flores brevissime pedicellati, pedicellis basi bibracteolatis.

1. M. discolor. Wall. Cat. n. 4337.-Cassine discolor, Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 378.-Evonymus garcinifolius. Roxb. Fl. Ind. i. p. 628. (ed. Wall.) i. p. 404.
$H a b$. in Silhet.
The above character is derived solely from M. discolor, but Dr. Wallich, in his list of East India plants, indicates with doubt some other species. One of these, however, is Celastrus bivalvis of Jack, which has no petals, and must be very different.

The genus is only pointed out by Dr. Wallich, and is adopted by Dr. Lindley, in his ' Introduction to the Natural System', without a definition. Dr. Wallich, influenced probably by the gamopetalous corolla, originally united it with Cassine, which is now generally referred to Ilicinea: Roxburgh inserted it in Evonymus, and described the petals as distinct: DeCandolle seems not to have been acquainted with it: Lindley places it without doubt in Celastrinea. To me its affinities are not at first sight very clear. In the true $C e-$ lastrinee there is usually a large flat disk, covering the shallow bottom of the calyx and cohering with it; the petals are distinct, and the stamens, so far from being inserted on the petals, often arise from the middle of the upper surface of the torus or disk. In Ilicinea, on the contrary, the petals are more or less united at the base, the stamens inserted on the tube, and there is no disk; from which considerations only one would have little hesitation in referring Microtropis to the latter family. But in Ilicinere the ovules are solitary, the seeds exarillate, and the fruit indehiscent; so that in as far as relates to these organs this genus is more related to Celastrinea.
guendus. Stigmata 4, punctiformia.-" Capsula oblonga, unilocularis, bivalvis, a basi dehiscens. Semina solitaria, arillo tenui succulento involuta. Albumen firmum tenax. Embryo erectus, cotyledonibus cordato-ovatis, radicula cylindrica, infera." - Roxb.

Arbor elegans, glabra, habitu Caralliæ. Folia opposita, ovata vel ovato-lanceolata, obtuse acuminata, coriacea, integerrima, subtus pallida, tenuiter penninervia, petiolata. Stipulæ nulla. Pedunculi axillares, vel supra-axillares ac interpetiolares, perbreves, semel bisve dichotomi, pauciflori. Flores brevissime pedicellati, pedicellis basi bibracteolatis.

1. M. discolor. Wall. Cat. n. 4337.-Cassine discolor, Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 378.-Evonymus garcinifolius. Roxb. Fl. Ind. i. p. 628. (ed. Wall.) i. p. 404.
$H a b$. in Silhet.
The above character is derived solely from M. discolor, but Dr. Wallich, in his list of East India plants, indicates with doubt some other species. One of these, however, is Celastrus bivalvis of Jack, which has no petals, and must be very different.

The genus is only pointed out by Dr. Wallich, and is adopted by Dr. Lindley, in his ' Introduction to the Natural System', without a definition. Dr. Wallich, influenced probably by the gamopetalous corolla, originally united it with Cassine, which is now generally referred to Ilicinea: Roxburgh inserted it in Evonymus, and described the petals as distinct: DeCandolle seems not to have been acquainted with it: Lindley places it without doubt in Celastrinea. To me its affinities are not at first sight very clear. In the true $C e-$ lastrinee there is usually a large flat disk, covering the shallow bottom of the calyx and cohering with it; the petals are distinct, and the stamens, so far from being inserted on the petals, often arise from the middle of the upper surface of the torus or disk. In Ilicinea, on the contrary, the petals are more or less united at the base, the stamens inserted on the tube, and there is no disk; from which considerations only one would have little hesitation in referring Microtropis to the latter family. But in Ilicinere the ovules are solitary, the seeds exarillate, and the fruit indehiscent; so that in as far as relates to these organs this genus is more related to Celastrinea.
guendus. Stigmata 4, punctiformia.-" Capsula oblonga, unilocularis, bivalvis, a basi dehiscens. Semina solitaria, arillo tenui succulento involuta. Albumen firmum tenax. Embryo erectus, cotyledonibus cordato-ovatis, radicula cylindrica, infera." - Roxb.

Arbor elegans, glabra, habitu Caralliæ. Folia opposita, ovata vel ovato-lanceolata, obtuse acuminata, coriacea, integerrima, subtus pallida, tenuiter penninervia, petiolata. Stipulæ nulla. Pedunculi axillares, vel supra-axillares ac interpetiolares, perbreves, semel bisve dichotomi, pauciflori. Flores brevissime pedicellati, pedicellis basi bibracteolatis.

1. M. discolor. Wall. Cat. n. 4337.-Cassine discolor, Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 378.-Evonymus garcinifolius. Roxb. Fl. Ind. i. p. 628. (ed. Wall.) i. p. 404.
$H a b$. in Silhet.
The above character is derived solely from M. discolor, but Dr. Wallich, in his list of East India plants, indicates with doubt some other species. One of these, however, is Celastrus bivalvis of Jack, which has no petals, and must be very different.

The genus is only pointed out by Dr. Wallich, and is adopted by Dr. Lindley, in his ' Introduction to the Natural System', without a definition. Dr. Wallich, influenced probably by the gamopetalous corolla, originally united it with Cassine, which is now generally referred to Ilicinea: Roxburgh inserted it in Evonymus, and described the petals as distinct: DeCandolle seems not to have been acquainted with it: Lindley places it without doubt in Celastrinea. To me its affinities are not at first sight very clear. In the true $C e-$ lastrinee there is usually a large flat disk, covering the shallow bottom of the calyx and cohering with it; the petals are distinct, and the stamens, so far from being inserted on the petals, often arise from the middle of the upper surface of the torus or disk. In Ilicinea, on the contrary, the petals are more or less united at the base, the stamens inserted on the tube, and there is no disk; from which considerations only one would have little hesitation in referring Microtropis to the latter family. But in Ilicinere the ovules are solitary, the seeds exarillate, and the fruit indehiscent; so that in as far as relates to these organs this genus is more related to Celastrinea.
guendus. Stigmata 4, punctiformia.-" Capsula oblonga, unilocularis, bivalvis, a basi dehiscens. Semina solitaria, arillo tenui succulento involuta. Albumen firmum tenax. Embryo erectus, cotyledonibus cordato-ovatis, radicula cylindrica, infera." - Roxb.

Arbor elegans, glabra, habitu Caralliæ. Folia opposita, ovata vel ovato-lanceolata, obtuse acuminata, coriacea, integerrima, subtus pallida, tenuiter penninervia, petiolata. Stipulæ nulla. Pedunculi axillares, vel supra-axillares ac interpetiolares, perbreves, semel bisve dichotomi, pauciflori. Flores brevissime pedicellati, pedicellis basi bibracteolatis.

1. M. discolor. Wall. Cat. n. 4337.-Cassine discolor, Wall. in Roxb. Fl. Ind. (ed. Wall.) ii. p. 378.-Evonymus garcinifolius. Roxb. Fl. Ind. i. p. 628. (ed. Wall.) i. p. 404.
$H a b$. in Silhet.
The above character is derived solely from M. discolor, but Dr. Wallich, in his list of East India plants, indicates with doubt some other species. One of these, however, is Celastrus bivalvis of Jack, which has no petals, and must be very different.

The genus is only pointed out by Dr. Wallich, and is adopted by Dr. Lindley, in his ' Introduction to the Natural System', without a definition. Dr. Wallich, influenced probably by the gamopetalous corolla, originally united it with Cassine, which is now generally referred to Ilicinea: Roxburgh inserted it in Evonymus, and described the petals as distinct: DeCandolle seems not to have been acquainted with it: Lindley places it without doubt in Celastrinea. To me its affinities are not at first sight very clear. In the true $C e-$ lastrinee there is usually a large flat disk, covering the shallow bottom of the calyx and cohering with it; the petals are distinct, and the stamens, so far from being inserted on the petals, often arise from the middle of the upper surface of the torus or disk. In Ilicinea, on the contrary, the petals are more or less united at the base, the stamens inserted on the tube, and there is no disk; from which considerations only one would have little hesitation in referring Microtropis to the latter family. But in Ilicinere the ovules are solitary, the seeds exarillate, and the fruit indehiscent; so that in as far as relates to these organs this genus is more related to Celastrinea.

After the fall of the segments of the corolla, its annular base around the ovarium, bearing on its inside the persistent filalaments and scales, presents so much the appearance of a cupshaped fleshy torus or disk (such as is to be seen in some species of Celastrus), that for some time I felt disposed to view it as such, and that the petals might be distinct and attached to the back or edge of this ring; but on examining several flowers in various stages I can perceive no trace whatever of an annulus, so long as the segments of the corolla were not broken off. There is therefore no distinct disk ; but I am far from denying it a torus, and in a sense somewhat different from what usually exists in the Corollifloræ. In most of that group of orders the petals are soldered together by their margins, and the filaments of the stamens, although apparently epipetalous, are decurrent, and may have their insertion traced to the same point as that of the corolla; there is besides sometimes a hypogynous disk, or glands. In Microtropis, however, the stamens are not at all decurrent, and therefore it is not improbable that there is a disk or torus, with which the lower part of the petals is completely incorporated, and that the stamens and scales are inserted on the upper or inner surface of the disk. Under this point of view Microtropis might be left in Celastrinere, and the principal objection to such would arise from the supposed torus being hypogynous, while in those species of Celastrus in which a cup-shaped torus is to be seen the torus is adnate to the bottom of the calyx, the margin only being free. In Celastrinea, moreover, the tube of the calyx is shallow and broad, in Microtropis it is small, if indeed any can be said to exist, for the sepals appear almost quite distinct.

Nearly all the genera referred to Celastrinere and Ilicinere require careful revision, several of them being much at variance with the characters of the orders in which they are placed. Professor Lindley inserts all the section Aquifoliacere of De Candolle in one order, reserving Celastrinea for the others. Mr. G. Don, in his edition of ' Miller's Dictionary, or General System of Gardening,' refers Cassine, Nemopanthes, and a few others of DeCandolle's Aquifoliacea to Celastrinee, and Myginda, Ilex, Prinos, and some new genera of Blume's to Ili-

After the fall of the segments of the corolla, its annular base around the ovarium, bearing on its inside the persistent filalaments and scales, presents so much the appearance of a cupshaped fleshy torus or disk (such as is to be seen in some species of Celastrus), that for some time I felt disposed to view it as such, and that the petals might be distinct and attached to the back or edge of this ring; but on examining several flowers in various stages I can perceive no trace whatever of an annulus, so long as the segments of the corolla were not broken off. There is therefore no distinct disk ; but I am far from denying it a torus, and in a sense somewhat different from what usually exists in the Corollifloræ. In most of that group of orders the petals are soldered together by their margins, and the filaments of the stamens, although apparently epipetalous, are decurrent, and may have their insertion traced to the same point as that of the corolla; there is besides sometimes a hypogynous disk, or glands. In Microtropis, however, the stamens are not at all decurrent, and therefore it is not improbable that there is a disk or torus, with which the lower part of the petals is completely incorporated, and that the stamens and scales are inserted on the upper or inner surface of the disk. Under this point of view Microtropis might be left in Celastrinere, and the principal objection to such would arise from the supposed torus being hypogynous, while in those species of Celastrus in which a cup-shaped torus is to be seen the torus is adnate to the bottom of the calyx, the margin only being free. In Celastrinea, moreover, the tube of the calyx is shallow and broad, in Microtropis it is small, if indeed any can be said to exist, for the sepals appear almost quite distinct.

Nearly all the genera referred to Celastrinere and Ilicinere require careful revision, several of them being much at variance with the characters of the orders in which they are placed. Professor Lindley inserts all the section Aquifoliacere of De Candolle in one order, reserving Celastrinea for the others. Mr. G. Don, in his edition of ' Miller's Dictionary, or General System of Gardening,' refers Cassine, Nemopanthes, and a few others of DeCandolle's Aquifoliacea to Celastrinee, and Myginda, Ilex, Prinos, and some new genera of Blume's to Ili-

After the fall of the segments of the corolla, its annular base around the ovarium, bearing on its inside the persistent filalaments and scales, presents so much the appearance of a cupshaped fleshy torus or disk (such as is to be seen in some species of Celastrus), that for some time I felt disposed to view it as such, and that the petals might be distinct and attached to the back or edge of this ring; but on examining several flowers in various stages I can perceive no trace whatever of an annulus, so long as the segments of the corolla were not broken off. There is therefore no distinct disk ; but I am far from denying it a torus, and in a sense somewhat different from what usually exists in the Corollifloræ. In most of that group of orders the petals are soldered together by their margins, and the filaments of the stamens, although apparently epipetalous, are decurrent, and may have their insertion traced to the same point as that of the corolla; there is besides sometimes a hypogynous disk, or glands. In Microtropis, however, the stamens are not at all decurrent, and therefore it is not improbable that there is a disk or torus, with which the lower part of the petals is completely incorporated, and that the stamens and scales are inserted on the upper or inner surface of the disk. Under this point of view Microtropis might be left in Celastrinere, and the principal objection to such would arise from the supposed torus being hypogynous, while in those species of Celastrus in which a cup-shaped torus is to be seen the torus is adnate to the bottom of the calyx, the margin only being free. In Celastrinea, moreover, the tube of the calyx is shallow and broad, in Microtropis it is small, if indeed any can be said to exist, for the sepals appear almost quite distinct.

Nearly all the genera referred to Celastrinere and Ilicinere require careful revision, several of them being much at variance with the characters of the orders in which they are placed. Professor Lindley inserts all the section Aquifoliacere of De Candolle in one order, reserving Celastrinea for the others. Mr. G. Don, in his edition of ' Miller's Dictionary, or General System of Gardening,' refers Cassine, Nemopanthes, and a few others of DeCandolle's Aquifoliacea to Celastrinee, and Myginda, Ilex, Prinos, and some new genera of Blume's to Ili-

After the fall of the segments of the corolla, its annular base around the ovarium, bearing on its inside the persistent filalaments and scales, presents so much the appearance of a cupshaped fleshy torus or disk (such as is to be seen in some species of Celastrus), that for some time I felt disposed to view it as such, and that the petals might be distinct and attached to the back or edge of this ring; but on examining several flowers in various stages I can perceive no trace whatever of an annulus, so long as the segments of the corolla were not broken off. There is therefore no distinct disk ; but I am far from denying it a torus, and in a sense somewhat different from what usually exists in the Corollifloræ. In most of that group of orders the petals are soldered together by their margins, and the filaments of the stamens, although apparently epipetalous, are decurrent, and may have their insertion traced to the same point as that of the corolla; there is besides sometimes a hypogynous disk, or glands. In Microtropis, however, the stamens are not at all decurrent, and therefore it is not improbable that there is a disk or torus, with which the lower part of the petals is completely incorporated, and that the stamens and scales are inserted on the upper or inner surface of the disk. Under this point of view Microtropis might be left in Celastrinere, and the principal objection to such would arise from the supposed torus being hypogynous, while in those species of Celastrus in which a cup-shaped torus is to be seen the torus is adnate to the bottom of the calyx, the margin only being free. In Celastrinea, moreover, the tube of the calyx is shallow and broad, in Microtropis it is small, if indeed any can be said to exist, for the sepals appear almost quite distinct.

Nearly all the genera referred to Celastrinere and Ilicinere require careful revision, several of them being much at variance with the characters of the orders in which they are placed. Professor Lindley inserts all the section Aquifoliacere of De Candolle in one order, reserving Celastrinea for the others. Mr. G. Don, in his edition of ' Miller's Dictionary, or General System of Gardening,' refers Cassine, Nemopanthes, and a few others of DeCandolle's Aquifoliacea to Celastrinee, and Myginda, Ilex, Prinos, and some new genera of Blume's to Ili-
cinea; but perhaps neither have weighed sufficiently the characters derived from the disk and position of the ovula. I am not aware of any genera that agree with the characters of Ilicineer, as limited by Brongniart and now usually adopted, cxcept Mex, Prinos (with their synonyms or subgenera, Winterlia, Macoucoua, and Ayeria), and Myginda integrifolia (not however a Myginda, that genus belonging certainly to $C e$ lastrinea) : to these Rhaptostylum approaches, and appears, from Kunth's description, principally to differ from them by the stamens being twice as many as the segments of the corolla. Nearly all the other genera enumerated by Lindley have the disk, distinct petals, and ascending ovula of Celastrince. Lepionurus, referred to Ilicinee by Don, and to Rhamnee by Lindley, having a monopetalous corolla, and the stamens inserted on it opposite to its lobes, has perhaps more affinity with Myrsinea. Strombosia, Bl., with a perigynous disk, and stamens opposite to, and inserted on the petals, and Leucoxylon, with numerous stamens, must obviously be also excluded. Nemopanthes has solitary pendulous ovules in each cell of the ovary, no disk; and although the petals are distinct and unconnected with the stamens, must undoubtedly be' joined to the Micinece, while the character of the order on that account ought to be slightly modified. Mylocaryum, having ten stamens and other points of difference, cannot be placed, as proposed by Lindley, among Celastrinece, as presently limited. As to Olinia, I had probably expressed myself too decidedly to Prof. Lindley when he refers it on my authority to Celastrinea : my original memoranda merely bear, that from the position of the stamens it was more related to Celastrinea that Rhamnece, in which DeCandolle placed it; but I am now convinced, from an examination of three species, and of the fruit, which is inferior, that M. O. Klotzsch, of Berlin, is correct in associating it with Myrrhinium and Fenzlia: these three may form a small group (Oliniea, or Myrrhiniece, to prevent it being confounded with Oleinea), intermediate between Memecylea and Myrtacea, but bearing more affinity with the latter: if Memecyleer, as Brown suggests, be united to Melastomacee, then Myrrhineer may form a section of Myrtacere.
cinea; but perhaps neither have weighed sufficiently the characters derived from the disk and position of the ovula. I am not aware of any genera that agree with the characters of Ilicineer, as limited by Brongniart and now usually adopted, cxcept Mex, Prinos (with their synonyms or subgenera, Winterlia, Macoucoua, and Ayeria), and Myginda integrifolia (not however a Myginda, that genus belonging certainly to $C e$ lastrinea) : to these Rhaptostylum approaches, and appears, from Kunth's description, principally to differ from them by the stamens being twice as many as the segments of the corolla. Nearly all the other genera enumerated by Lindley have the disk, distinct petals, and ascending ovula of Celastrince. Lepionurus, referred to Ilicinee by Don, and to Rhamnee by Lindley, having a monopetalous corolla, and the stamens inserted on it opposite to its lobes, has perhaps more affinity with Myrsinea. Strombosia, Bl., with a perigynous disk, and stamens opposite to, and inserted on the petals, and Leucoxylon, with numerous stamens, must obviously be also excluded. Nemopanthes has solitary pendulous ovules in each cell of the ovary, no disk; and although the petals are distinct and unconnected with the stamens, must undoubtedly be' joined to the Micinece, while the character of the order on that account ought to be slightly modified. Mylocaryum, having ten stamens and other points of difference, cannot be placed, as proposed by Lindley, among Celastrinece, as presently limited. As to Olinia, I had probably expressed myself too decidedly to Prof. Lindley when he refers it on my authority to Celastrinea : my original memoranda merely bear, that from the position of the stamens it was more related to Celastrinea that Rhamnece, in which DeCandolle placed it; but I am now convinced, from an examination of three species, and of the fruit, which is inferior, that M. O. Klotzsch, of Berlin, is correct in associating it with Myrrhinium and Fenzlia: these three may form a small group (Oliniea, or Myrrhiniece, to prevent it being confounded with Oleinea), intermediate between Memecylea and Myrtacea, but bearing more affinity with the latter: if Memecyleer, as Brown suggests, be united to Melastomacee, then Myrrhineer may form a section of Myrtacere.
cinea; but perhaps neither have weighed sufficiently the characters derived from the disk and position of the ovula. I am not aware of any genera that agree with the characters of Ilicineer, as limited by Brongniart and now usually adopted, cxcept Mex, Prinos (with their synonyms or subgenera, Winterlia, Macoucoua, and Ayeria), and Myginda integrifolia (not however a Myginda, that genus belonging certainly to $C e$ lastrinea) : to these Rhaptostylum approaches, and appears, from Kunth's description, principally to differ from them by the stamens being twice as many as the segments of the corolla. Nearly all the other genera enumerated by Lindley have the disk, distinct petals, and ascending ovula of Celastrince. Lepionurus, referred to Ilicinee by Don, and to Rhamnee by Lindley, having a monopetalous corolla, and the stamens inserted on it opposite to its lobes, has perhaps more affinity with Myrsinea. Strombosia, Bl., with a perigynous disk, and stamens opposite to, and inserted on the petals, and Leucoxylon, with numerous stamens, must obviously be also excluded. Nemopanthes has solitary pendulous ovules in each cell of the ovary, no disk; and although the petals are distinct and unconnected with the stamens, must undoubtedly be' joined to the Micinece, while the character of the order on that account ought to be slightly modified. Mylocaryum, having ten stamens and other points of difference, cannot be placed, as proposed by Lindley, among Celastrinece, as presently limited. As to Olinia, I had probably expressed myself too decidedly to Prof. Lindley when he refers it on my authority to Celastrinea : my original memoranda merely bear, that from the position of the stamens it was more related to Celastrinea that Rhamnece, in which DeCandolle placed it; but I am now convinced, from an examination of three species, and of the fruit, which is inferior, that M. O. Klotzsch, of Berlin, is correct in associating it with Myrrhinium and Fenzlia: these three may form a small group (Oliniea, or Myrrhiniece, to prevent it being confounded with Oleinea), intermediate between Memecylea and Myrtacea, but bearing more affinity with the latter: if Memecyleer, as Brown suggests, be united to Melastomacee, then Myrrhineer may form a section of Myrtacere.
cinea; but perhaps neither have weighed sufficiently the characters derived from the disk and position of the ovula. I am not aware of any genera that agree with the characters of Ilicineer, as limited by Brongniart and now usually adopted, cxcept Mex, Prinos (with their synonyms or subgenera, Winterlia, Macoucoua, and Ayeria), and Myginda integrifolia (not however a Myginda, that genus belonging certainly to $C e$ lastrinea) : to these Rhaptostylum approaches, and appears, from Kunth's description, principally to differ from them by the stamens being twice as many as the segments of the corolla. Nearly all the other genera enumerated by Lindley have the disk, distinct petals, and ascending ovula of Celastrince. Lepionurus, referred to Ilicinee by Don, and to Rhamnee by Lindley, having a monopetalous corolla, and the stamens inserted on it opposite to its lobes, has perhaps more affinity with Myrsinea. Strombosia, Bl., with a perigynous disk, and stamens opposite to, and inserted on the petals, and Leucoxylon, with numerous stamens, must obviously be also excluded. Nemopanthes has solitary pendulous ovules in each cell of the ovary, no disk; and although the petals are distinct and unconnected with the stamens, must undoubtedly be' joined to the Micinece, while the character of the order on that account ought to be slightly modified. Mylocaryum, having ten stamens and other points of difference, cannot be placed, as proposed by Lindley, among Celastrinece, as presently limited. As to Olinia, I had probably expressed myself too decidedly to Prof. Lindley when he refers it on my authority to Celastrinea : my original memoranda merely bear, that from the position of the stamens it was more related to Celastrinea that Rhamnece, in which DeCandolle placed it; but I am now convinced, from an examination of three species, and of the fruit, which is inferior, that M. O. Klotzsch, of Berlin, is correct in associating it with Myrrhinium and Fenzlia: these three may form a small group (Oliniea, or Myrrhiniece, to prevent it being confounded with Oleinea), intermediate between Memecylea and Myrtacea, but bearing more affinity with the latter: if Memecyleer, as Brown suggests, be united to Melastomacee, then Myrrhineer may form a section of Myrtacere.

Vateria, L. (Dipterocarpece).

In the 'Prod. Fl. Penins. Ind. Or.' i. p. 84, Dr. Wight and I pointed out how V. lanccolata of Roxburgh differed from the original species of the genus. Our remarks have been lately confirmed by the discovery of another species allied to, but distinct from V. lanceolata. I shall here therefore divide the genus into two sections or subgenera.
I. Euvateria.

Calycis laciniæ obtusæ, fructiferi immutatæ. Petala ovalia calycem vix superantia. - Stamina 40-50: antherarum loculi lineares. Stylus elongatus, stigma acutum.-Panicula magna, terminalis.

1. V. Indica, Linn. Wight et Arn., l.c.

II. Isauxis.

Calycis laciniæ ovatæ acutæ, fructiferi grandefactæ. Petala falcata, calyce triplo longiora. Stamina 15 : antherarum loculi oblongi. Stylus brevis, stigma clavatum, 3-6-dentatum.-Paniculæ axillares, folio breviores.
2. V. lanceolata (Roxb.) ; foliis lanceolatis basi acutis. Roxb. Fl. Ind. ii. p. 601.
Hab. in Silhet.
3. V. Roxburghiana (Wight Mss.) ; foliis oblongis basi retusis vel obtusis. Wight, Cat. n. 2448.
Hab. in Malabaria, Wight.
XVII.-On the Goniatites found in the Transition Formations of the Rhine. By M. Ernest Beyrich.
[With Plates.]
[Continued from p. 20.]

Section IV. Irregulares.

The dorsal lobe simple, infundibuliform. Two or more pointed lateral lobes, generally infundibuliform, increasing irregularly.
7. Ammonites Hœeninghausi, Von Buch.
L. Von Buch Goniat. p. 40. Pl. II. fig. 2.

The dorsal lobe is somewhat broader than deep, the dorsal saddle angulose ; there are two lateral lobes; the first is linguiform and twice the depth of the dorsal lobe. The first lateral saddle is narrow and elevated much higher than the dorsal

Vateria, L. (Dipterocarpece).

In the 'Prod. Fl. Penins. Ind. Or.' i. p. 84, Dr. Wight and I pointed out how V. lanccolata of Roxburgh differed from the original species of the genus. Our remarks have been lately confirmed by the discovery of another species allied to, but distinct from V. lanceolata. I shall here therefore divide the genus into two sections or subgenera.
I. Euvateria.

Calycis laciniæ obtusæ, fructiferi immutatæ. Petala ovalia calycem vix superantia. - Stamina 40-50: antherarum loculi lineares. Stylus elongatus, stigma acutum.-Panicula magna, terminalis.

1. V. Indica, Linn. Wight et Arn., l.c.

II. Isauxis.

Calycis laciniæ ovatæ acutæ, fructiferi grandefactæ. Petala falcata, calyce triplo longiora. Stamina 15 : antherarum loculi oblongi. Stylus brevis, stigma clavatum, 3-6-dentatum.-Paniculæ axillares, folio breviores.
2. V. lanceolata (Roxb.) ; foliis lanceolatis basi acutis. Roxb. Fl. Ind. ii. p. 601.
Hab. in Silhet.
3. V. Roxburghiana (Wight Mss.) ; foliis oblongis basi retusis vel obtusis. Wight, Cat. n. 2448.
Hab. in Malabaria, Wight.
XVII.-On the Goniatites found in the Transition Formations of the Rhine. By M. Ernest Beyrich.
[With Plates.]
[Continued from p. 20.]

Section IV. Irregulares.

The dorsal lobe simple, infundibuliform. Two or more pointed lateral lobes, generally infundibuliform, increasing irregularly.
7. Ammonites Hœeninghausi, Von Buch.
L. Von Buch Goniat. p. 40. Pl. II. fig. 2.

The dorsal lobe is somewhat broader than deep, the dorsal saddle angulose ; there are two lateral lobes; the first is linguiform and twice the depth of the dorsal lobe. The first lateral saddle is narrow and elevated much higher than the dorsal

Vateria, L. (Dipterocarpece).

In the 'Prod. Fl. Penins. Ind. Or.' i. p. 84, Dr. Wight and I pointed out how V. lanccolata of Roxburgh differed from the original species of the genus. Our remarks have been lately confirmed by the discovery of another species allied to, but distinct from V. lanceolata. I shall here therefore divide the genus into two sections or subgenera.
I. Euvateria.

Calycis laciniæ obtusæ, fructiferi immutatæ. Petala ovalia calycem vix superantia. - Stamina 40-50: antherarum loculi lineares. Stylus elongatus, stigma acutum.-Panicula magna, terminalis.

1. V. Indica, Linn. Wight et Arn., l.c.

II. Isauxis.

Calycis laciniæ ovatæ acutæ, fructiferi grandefactæ. Petala falcata, calyce triplo longiora. Stamina 15 : antherarum loculi oblongi. Stylus brevis, stigma clavatum, 3-6-dentatum.-Paniculæ axillares, folio breviores.
2. V. lanceolata (Roxb.) ; foliis lanceolatis basi acutis. Roxb. Fl. Ind. ii. p. 601.
Hab. in Silhet.
3. V. Roxburghiana (Wight Mss.) ; foliis oblongis basi retusis vel obtusis. Wight, Cat. n. 2448.
Hab. in Malabaria, Wight.
XVII.-On the Goniatites found in the Transition Formations of the Rhine. By M. Ernest Beyrich.
[With Plates.]
[Continued from p. 20.]

Section IV. Irregulares.

The dorsal lobe simple, infundibuliform. Two or more pointed lateral lobes, generally infundibuliform, increasing irregularly.
7. Ammonites Hœeninghausi, Von Buch.
L. Von Buch Goniat. p. 40. Pl. II. fig. 2.

The dorsal lobe is somewhat broader than deep, the dorsal saddle angulose ; there are two lateral lobes; the first is linguiform and twice the depth of the dorsal lobe. The first lateral saddle is narrow and elevated much higher than the dorsal

Vateria, L. (Dipterocarpece).

In the 'Prod. Fl. Penins. Ind. Or.' i. p. 84, Dr. Wight and I pointed out how V. lanccolata of Roxburgh differed from the original species of the genus. Our remarks have been lately confirmed by the discovery of another species allied to, but distinct from V. lanceolata. I shall here therefore divide the genus into two sections or subgenera.
I. Euvateria.

Calycis laciniæ obtusæ, fructiferi immutatæ. Petala ovalia calycem vix superantia. - Stamina 40-50: antherarum loculi lineares. Stylus elongatus, stigma acutum.-Panicula magna, terminalis.

1. V. Indica, Linn. Wight et Arn., l.c.

II. Isauxis.

Calycis laciniæ ovatæ acutæ, fructiferi grandefactæ. Petala falcata, calyce triplo longiora. Stamina 15 : antherarum loculi oblongi. Stylus brevis, stigma clavatum, 3-6-dentatum.-Paniculæ axillares, folio breviores.
2. V. lanceolata (Roxb.) ; foliis lanceolatis basi acutis. Roxb. Fl. Ind. ii. p. 601.
Hab. in Silhet.
3. V. Roxburghiana (Wight Mss.) ; foliis oblongis basi retusis vel obtusis. Wight, Cat. n. 2448.
Hab. in Malabaria, Wight.
XVII.-On the Goniatites found in the Transition Formations of the Rhine. By M. Ernest Beyrich.
[With Plates.]
[Continued from p. 20.]

Section IV. Irregulares.

The dorsal lobe simple, infundibuliform. Two or more pointed lateral lobes, generally infundibuliform, increasing irregularly.
7. Ammonites Hœeninghausi, Von Buch.
L. Von Buch Goniat. p. 40. Pl. II. fig. 2.

The dorsal lobe is somewhat broader than deep, the dorsal saddle angulose ; there are two lateral lobes; the first is linguiform and twice the depth of the dorsal lobe. The first lateral saddle is narrow and elevated much higher than the dorsal

